- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Hoshino, Masahiro (2)
-
Liu, Yi-Hsin (2)
-
Bessho, Naoki (1)
-
Burch, James_L (1)
-
Cassak, Paul_A (1)
-
Eastwood, Jonathan_P (1)
-
Genestreti, Kevin (1)
-
Guo, Fan (1)
-
Hesse, Michael (1)
-
Ji, Hantao (1)
-
Nakamura, Rumi (1)
-
Nakamura, Takuma_K_M (1)
-
Norgren, Cecilia (1)
-
Phan, Tai (1)
-
Swisdak, Marc (1)
-
Toledo-Redondo, Sergio (1)
-
Zenitani, Seiji (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Magnetic reconnection is a ubiquitous plasma process that transforms magnetic energy into particle energy during eruptive events throughout the universe. Reconnection not only converts energy during solar flares and geomagnetic substorms that drive space weather near Earth, but it may also play critical roles in the high energy emissions from the magnetospheres of neutron stars and black holes. In this review article, we focus on collisionless plasmas that are most relevant to reconnection in many space and astrophysical plasmas. Guided by first-principles kinetic simulations and spaceborne in-situ observations, we highlight the most recent progress in understanding this fundamental plasma process. We start by discussing the non-ideal electric field in the generalized Ohm’s law that breaks the frozen-in flux condition in ideal magnetohydrodynamics and allows magnetic reconnection to occur. We point out that this same reconnection electric field also plays an important role in sustaining the current and pressure in the current sheet and then discuss the determination of its magnitude (i.e., the reconnection rate), based on force balance and energy conservation. This approach to determining the reconnection rate is applied to kinetic current sheets with a wide variety of magnetic geometries, parameters, and background conditions. We also briefly review the key diagnostics and modeling of energy conversion around the reconnection diffusion region, seeking insights from recently developed theories. Finally, future prospects and open questions are discussed.more » « less
-
Guo, Fan; Liu, Yi-Hsin; Zenitani, Seiji; Hoshino, Masahiro (, Space Science Reviews)Abstract Magnetic reconnection occurs ubiquitously in the universe and is often invoked to explain fast energy release and particle acceleration in high-energy astrophysics. The study of relativistic magnetic reconnection in the magnetically dominated regime has surged over the past two decades, revealing the physics of fast magnetic reconnection and nonthermal particle acceleration. Here we review these recent progresses, including the magnetohydrodynamic and collisionless reconnection dynamics as well as particle energization. The insights in astrophysical reconnection strongly connect to the development of magnetic reconnection in other areas, and further communication is greatly desired. We also provide a summary and discussion of key physics processes and frontier problems, toward a better understanding of the roles of magnetic reconnection in high-energy astrophysics.more » « less
An official website of the United States government
